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ADVANCES IN TIIE NUMERICAL COMPUTATION

OF CAPILLARY-GRAVITY WAVES

Jean-Marc Vanden-Broeck

Stanford University
Stanford, California

§1. INTRODUCTION

This paper deals with the computation of symmetric finite
amplitude waves propagating without change of form on the sur-

face of a liquid above a horizontal flat bottom. We assume

the liquid to be inviscid and incompressible and the flow to
be irrotational. The free-surface condition, including the

effects of capillarity, is used in its exact nonlinear form.

In Sec. 2 we formulate the problem as an integro-differ-

ential equation system for the unknown shape of the free sur-

face. This system consists of a nonlinear differential equa-

tion coupled with a linear integral equation. A numerical

scheme based on Newton's iterations is derived to solve these

equations. Details of the numerical procedure are given in

Sec. 3. The formulation of the problem and the numerical
method used to solve it, follows closely the work of Schwartz

and Vanden-Broeck [8] and Vanden-Broeck and Schwartz [10].

In recent years important progress has been achieved in
the calculation of steep gravity waves in water of arbitrary

uniform depth. For example, Schwartz [7] extended Stokes'

series to high order by computer methods and then recast these

polynomials as Pad6 approximants. High accuracy solutions

were obtained in that way. This al roach was further refined

by Longuet-Higgins 14] in the infinite depth case and by

Cokelet [2] in the finite depth case. In Sec. 4.1 we use the
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numerical procedure of Secs. 2 and 3 to compute steep gravity

waves in shallow water. These computations numerically con-

firm the validity of the use of Pad4 approximants as applied

to gravity waves. While the convergence of Cokelet's series

deteriorates for steep waves in very shallow water, our numer-

ical scheme remains efficient for depths as small as 1/120 of

a wavelength.

Approximate solutions for gravity-capillary waves were

published long ago by Harrison [3]. The surface profile was

sought as a Fourier series in the horizontal coordinate with

coefficients that are power series in the wave amplitude.

This perturbation expansion invoked Stokes' hypothesis that

the n-th Fourier coefficient is of n-th order in the amplitude.

The use of this hypothesis resulted in infinite values for cer-

tain of the series coefficients when the dimensionless capil-

lary number K is the reciprocal of an integer greater than one.

For the particular case K = 1/2, Wilton [11], by revoking

Stokes' hypothesis and reordering the terms of the series, was

able to find two solutions. This analytical approach was fur-

ther extended by Pierson and Fife [61, Nayfeh [51, and Chen

and Saffman [1]. The numerical scheme of Sec. 3 was applied

by Schwartz and Vanden-Broeck [8] to compute gravity-capillary

waves in deep water. A summary of their results is given in

Sec. 4.2. In addition, we show that the wave speed parameter

p is not a single valued function of K. This fact enables us

to extend Schwartz and Vanden-Broeck's results.

All the capillary-gravity waves obtained by Schwartz and

Vanden-Broeck [81 are ultimately limited by contact with adja-

cent waves. Vanden-Broeck and Keller [9] have developed a

numerical procedure to construct waves of higher amplitude.

A discussion of their method is given in Sec. 4.3.

§2. MATHEMATICAL FOrNULATION

We consider two-dimensional, periodic waves of wavelength

X and phase velocity c propagating on the surface of a liquid

under the combined effects of gravity g and surface tension T

over a horizontal bottom. We choose a frame of reference in
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which the waves are steady, as is the fluid motion, which is

assumed to be a potential flow.
The variables are made dimensionless by referring them to

the velocity scale (gA/2T)I/2 and to the length A/2w. In addi-
tion, we introduce the wave-speed parameter

2= g 2  (1)

and the dimensionless capillary number

K - (2)
pg A

Here p is the fluid density.

The condition of constant pressure (p 0) on the free

surface can be written

1qq* + y + K - (3)
2qR 2

Here, q = u - iv is the complex velocity and the asterisk sig-

nifies complex conjugation. The acceleration of gravity acts

in the negative y direction. The y-axis is chosen as a line

of symmetry of a surface wave. R is the radius of curvature

counted positive when the center of curvature lies on the

fluid side of the free surface.
The chdice of the Bernoulli constant in (3) fixes the

origin of y as the undisturbed level of the free surface for

which the velocity and the curvature are, respectively, equal

to W /2 and zero.

Let the stream function assume the values zero and -Q on

the free surface and on the bottom, respectively. The undis-

turbed fluid depth d is defined by

d - Q  (4)

We choose the complex potential

f = p + io

as the independent variable.

In order to satisfy the boundary condition Dy/ao = 0 on

the bottom = -Q, we reflect the flow in the boundary 0 = -Q.
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Thus we seek z = x + iy as an analytic function of f in the

strip -2Q !: ' - 0.

It is convenient to introduce the following change of

variables

f = + ip = i/j log C (5)

where C re i  Relation (5) maps the bottom ' = -Q, the free

surface ' = 0, and its image ' = -2Q, respectively, onto the
-d 2

circles r = r0 = e , r = 1, and r = r0 . The values of the

real and imaginary parts of the function F(C) = Cdz/dC - i on
2

the free surface r = 1 and on its image r = r0 are related by
the .ntities

x'(e) = -1 - IF(ei) = -1 - IF(r 20e) (6)
' . 2 ie

y'() = RF(e ) = -RF(r 0 e ) (7)

Here, x' (0) and y' (0) represent, respectively, the real and
imaginary parts of the function dz/dO on the free surface r = 1.

These variables have the periodicity property

[x' (e) + 1] dO = y'(O) de = 0 (B)

In order to find a relation between x'(G) and y'(6) we

apply Cauchy's theorem to the function F(C) in the annulus
2

r0  I~ 1. Using the relations (6), (7), and (8) we find,

after some algebra,

2ir ' o ( - 0) d

x' (8) + 1 = _L- Y'(0) cot 2
27 f 22 y

r 0 27 [1 + x'(O)][r - cos(0 - 0)] - y'()sin(4 - e)

--- r 0  2r 2 cos(0 - 0) + 10 0
(9)

the first integral being of Cauchy principal value form.

Exploiting the bilateral symmetry of the wave about 0 = 0, we

rewrite (9) as
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x'(e) + 1 T y'(4)(cot 0) + cot (+ e))d

r [0  7 1 + x'(0)][r - cos(e - l)1 - y'(4)sin(4 - e)
0 r4 - 2r0 cos(e - 0) + 1d

2 2
r 0  l [ + x'()][r - cos(e + 4)] - y'(f)sin( 4 0)

0 r0 - 2r0 cos(e + 0) + d

(10)

The surface condition (3) can now be rewritten as

' ( ,2 12 -12 + 1(x,2 + y, -i _ ]

y 1) 2 1]3/

+ K(x'y" - y'x" (x'2 + y,2)3/2 - 0 (11)

In addition to the parameters r0, K, and p, a given wave

is characterized by a third parameter s, which is a measure of

the wave steepness. This parameter can be defined in many

different ways. Precise definitions appropriate to each of

the problems considered will be given in the following sec-

tions. Dimensional analysis implies that a functional rela-

tionship should exist among these parameters:

f(P,K,s,r0 ) = 0

We shall consider two closely related numerical schemes.

In the numerical scheme I, we fix r0 , s, and K and we seek the

function y(e), e E [O,n] and a value for p. In the numerical

scheme II, We fix r0 , s, and w and we seek the function y(e)

and a value for K.

§3. NUMERICAL PROCEDURE

We seek a numerical solution of the integro-differential

system of Eqs. (10) and (11) by a finite difference method.

Introducing a uniform mesh, we have

ei  - ((i - 1)/N]iT i = 1, ..... N + 1 (12)

Since the wave is symmetrical, we have

1-N+1
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Thus the unknown function 3y/a0 can be represented by the vec-

tor of dimension N - 1,

O= y 2, ) (13)
2 N

where

1

We now define the midpoints y = 2 (6i + 8i+l)' i 1,

N, and we represent the values of x/36, ay/De, and y at

the points ji by the vectors xA' Y', and yM'

We seek to satisfy the system of Eqs. (10) and (11) at

the N points yi. The integrals in (10) are evaluated at the

points yi by the trapezoidal rule (which is of infinite order

since the integrand is periodic). The integrals involving

the function y'(f) are computed by integration over 6i. The

singularity of the Cauchy principal value is automatically

taken into account since the quadrature is symmetrical with

respect to the singularity. The remaining integrals in (10)

are computed by integration over yi" Thus, we obtain

1+ x =Ay' + B(x' + 1)

or

= - + (I - B) -Ay' (14)

Here, A and B are known matrices and I is the unit matrix. We

note that B = 0 for infinite depth (i.e., r0 = 0) so that no

matrix inversion is needed in this particular case.

The vectors yM and yM are expressed in terms of y' by a

sixth-order interpolation formula and by a sixth-order quadra-

ture formula, thus,

Y CY' (15)

M= Y0 + Dy' 
(16)

where C and D are known matrices. The elevation y0 of the

free surface at 0 = 0 has to be found as part of the solution.
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Substituting (14), (15), and (16) into (11), we obtain a sys-

tem of N nonlinear algebraic equations. Using the definition

of s we obtain an extra equation. Thus we have N + 1 equa-

tions for the N + 1 unknowns (y, "__ yN, y0 , p) in scheme I

and (y, . .... YN' Y0 , K) in scheme II. This system of equa-

tions was solved by Newton's iterations. Each iteration re-

quires the inversion of a matrix. We note that the matrices

A and B in (14) depend only on r0 . Thus computing time can be

saved by computing (I - B)-A at the beginning of the program.

In all the cases to be discussed, the numerical scheme

was found to converge quadratically. Four or five iterations

were required tc satisfy the algebraic equations with an error

less than 10- 12. With N = 80, each iteration takes about 3.5

seconds on a CDC 6600 computer.

§4. DISCUSSION OF RESULTS

§4.1 Gravity Waves in Shallow Water

Vanden-Broeck and Schwartz [10] have applied the numeri-

cal scheme of Sec. 3 to compute steep gravity waves in shallow

water. The effect of surface tension was neglected (i.e.,

K = 0) and the parameter s was chosen to be

2y cs y= (17)

Here, yc is the elevation of the crests of the wave. For the

highest wave, the velocity at the crest vanishes. Thus, from

(3), Yc = j/
2
, so s = 1 for the highest wave. In general s

ranges between 0 and 1.

In order to compute accurately the crests of the waves,

which become sharp when s increases, a new independent varia-

ble B was introduced by the relation

0 = 6 - a sin 0 (18)

The closer a is to one, the greater the concentration of mesh

points near the crest. It was found that steep waves could be

computed by choosing a = 0.999.

Table 1 shows values of w for r0 = 0.5 computed with 40,

60, and 80 mesh points. The computed values for N = 80 have
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TABLE 1. Values of P for r0 = 0.5 and 0.53 - s 0.992.

s N = 40 N = 60 N = 80 Cokelet

0.52966 0.666501 0.666501 0.666501 0.666501

0.69331 0.706443 0.706443 0.706443 0.706443

0.84727 0.748230 0.748230 0.748230 0.748230

0.92326 0.764404 0.764403 0.764403 0.764403

0.96149 0.767749 0.767750 0.767750 0.767748

0.97687 0.767537 0.767540 0.767540 0.76754

0.98458 0.767089 0.767096 0.767097 0.76707

0.99228 0.766551 0.766556 0.766557 0.76648

converged to six places following the decimal point for s <0.97

and to five places for s > 0.97. The last column contains the

values of V obtained by Cokelet [2]. The lowest number corre-

sponds to the highest steepness for which Cokelet computed the

wave speed. His results are in good agreement with our numer-

ical values. Thus, the validity of the Pad4 approximant method

for finite depth gravity waves is confirmed. It should be

pointed out that Cokelet used another parameter instead of our

parameter s. Thus, a part of the small discrepancy at the bot-

tom of the table may be attributed to the loss of accuracy in-

volved in the calculation of s from Cokelet's results.

The convergence of Cokelet's results deteriorates for

steep waves in shallow depth. On the other hand, our numerical

scheme remains efficient for depths as small as 1/120 of a

TABLE 2. Values of p for r0 =0.9.

s N = 60 N = 80 Cokelet

0.42183 0.127329 0.127329 0.12733

0.61793 0.142055 0.142054 0.141983

0.81142 0.158013 0.158011 0.1578

0.90849 0.14092 0.164091 0.1638

0.95 0.165039 0.165038 0.164

0.98 0.164678 0.164684 0.163

0.99 0.164433 0.164437 0.162
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wavelength. In Table 2 we compare the two methods for the

smallest depth r0 = 0.9 considered by Cokelet. For steep

waves our results have converged to five decimal places.

Cokelet's series expansion method gives only two correct deci-

mal places for steep waves.

§4.2 Gravity-Capillary Waves in Deep Water

The procedure of Sec. 3 was used by Schwartz and Vanden-

Broeck [8] to compute capillary-gravity waves in deep water.

The parameter s was defined as the steepness of the wave (i.e.,

the difference of ordinates between a crest and a trough div-

ided by the wavelength). Four families, each labeled with a

"type number," were studied. The numerical results indicate

that Harrison's [3] series solution agrees, at least for small

finite values of the steepness, with the family of type n when

K lies in the open interval (1/n + 1, 1/n) for n > 2 and in

the interval (1/2, -) for n = 1. Typical profiles of the free

s-irface for various values of p, K, and s can be found in

Schwartz and Vanden-Broeck [8].

Figure 1 shows the variation of the parameter i, with K

for s = 0.03. The four continuous families are displayed.

Also shown is the well-known infinitesimal wave solution

=1+ K

Schwartz and Vanden-Broeck [8] started the iterations

with a simple cosine profile. The numerical scheme was found

to converge to the family of type n when K (1/n + 1, 1/n)

for n - 2 and K ( (1/2, -) for n = 1. Once a given wave of

type n had been obtained, the family n was then computed by a

type of "boot-strap" technique, using the numerical scheme I.

That is, a converged solution for one value of K was used as

an initial guess for a wave with K altered by a few percent,

and so on. For s = 0.03 Schwartz and Vanden-Broeck [8] found

that family 3 could not be computed for K - 0.2515. Similar-

ly, family 4 could only be computed for K - 0.21.

In the present paper we have extended the computations

of families I and 4 by a "boot-strap" technique using the

numerical scheme II. For example -ne solution of family 3
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//
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0.5

0.5 .0 1.5

FIG. 1. Variation of speed parameter v with capillary number
for s = 0.03. The solid curves are results of Schwartz and

Vanden-Broeck [81 while the dashed lines show the results of
the present computations.

for , = 0.2515 and .. = 1.2478 was used as an initial guess to

compute the solution for a value of . slightly less and so on.

The results are shown in Fig. 1. Families 3 and 4 could be

extended to larger ranges than those presented in the figure.

However, these results are not reported here since our pur-

pose is simply to show that the parameter . is not a single

valued function of w.
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4.3 Waves with Trapped Bubbles

All the capillary-gravity waves computed by Schwartz and

Vanden-Broeck [81 are ultimately limited by contact with adja-

cent waves for some value s* of the amplitude parameter. The

analytic continuation of these solutions for s > s* yield over-

lapping waves with multiple valued velocities. Thus, these

solutions are not admissible as solutions of the physical prob-

lem. Vanden-Broeck and Keller [9] have shown how to modify

the numerical scheme of Secs. 2 and 3 in order to obtain phys-

ically acceptable solutions for s > s*. The general idea is

to prevent the free surface from crossing itself. The solu-

tions for s > s* have adjacent waves touching at one point,

just like in Schwartz and Vanden-Broeck's highest waves. Thus

each pair of aCjacent waves enclose a region devoid of fluid,

which we call a bubble. The pressure in the bubble is a func-

tion of the amplitude parameter.

Vanden-Broeck and Keller [9] have performed accurate com-

putations in the particular case of pure capillary waves in

water of infinite depth. They have shown that the new family

of solutions exists for arbitrarily large values of the

steepness.

ACKNOWLEDGMENT

This study was supported by the Office of Naval Research,

the National Science Foundation, the Air Force Office of Sci-

entific Research, and the Army Research Office.

REFERENCES

1. Chen, B., and Saffman, P. G., Steady gravity-capillary

waves on deep water, Part I: Weakly nonlinear waves,

Stud. Appl. Math. 60:183-210 (1979).

2. Cokelet, E. D., Steep gravity waves in water of arbitrary

uniform depth, Phil. Trans. Roy. Soc. A 286:183-230 (1977).

3. Harrison, W. J., The influence of viscosity and capillar-

ity on waves of finite amplitude, Proc. Lond. Math. Soc.

7:107-121 (1909).



310 Jean-Marc Vanden-Broeck

4. Longuet-Higgins, M. S., Integral properties of periodic

gravity waves of finite amplitude, Proc. Roy. Soc.

A 342:157-174 (1975).

5. Nayfeh, A. H., Triple and quintuple-dimpled wave profiles

in deep water, Phys. Fluids 13:545-550 (1970).

6. Pierson, W. J., and Fife, P., Some nonlinear properties

of long crested periodic waves with lengths near 2.44

centimeters, J. Geophys. Res. 66:163-179 (1961).

7. Schwartz, L. W., Computer extension and analytic contin-

uation of Stokes' expansion for gravity waves, J. Fluid

Nech. 62:553-578 (1974).

8. Schwartz, L. W., and Vanden-Broeck, J.-M., Numerical

solution of the exact equations for capillary-gravity

waves, J. Fluid Mech. 95:119-139 (1979).

9. Vanden-Broeck, J.-M., and Keller, J. B., A new family of

capillary waves, J. Fluid Mech. (in press).

10. Vanden-Broeck, J.-M., and Schwartz, L. W., Numerical

computation of steep gravity waves in shallow water,

Phys. Fluids 22i1868-1B71 (1979).

11. Wilton, J. R., On ripples, Phil. Mag. 29:688-700 (1915).

D It i t Yecial ,

* Av il and/or

"Di 
t 

pec 
.

.

.l




